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Abstract

Consider a normally distributed response variable, related to an explanatory variable through
the simple linear regression model. Data obtained on the response variable, corresponding to
known values of the explanatory variable (i.e., calibration data), are to be used for testing hy-
potheses concerning unknown values of the explanatory variable. We consider the problem
of testing an unlimited sequence of one sided hypotheses concerning the explanatory variable,
using the corresponding sequence of values of the response variable and the same set of cali-
bration data. This is the situation of multiple use of the calibration data. The tests derived
in this context are characterized by two types of uncertainties: one uncertainty associated with
the sequence of values of the response variable, and a second uncertainty associated with the
calibration data. We derive tests based on a condition that incorporates both of these uncer-
tainties. The solution has practical applications in the decision limit problem. We illustrate
our results using an example dealing with the estimation of blood alcohol concentration based
on breath estimates of the alcohol concentration. In the example, the problem is to test if the
unknown blood alcohol concentration of an individual exceeds a threshold that is safe for driving.
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1. Introduction

The problems addressed in this article are in the set up of a linear regression model where

normality is assumed for the dependent variable. Thus let y1, %2, ..., yv be N independent
observations on a response variable corresponding to the values z, Z2, ..., Tn, respectively, of
an explanatory variable. where,

yj ~ N(a + fz;,0%), (1.1)
j=1,2 ..., N. The z;’s are assumed to be non-random quantities. Now let yo be another

observation corresponding to an unknown value, say 8. of the explanatory variable, where yg is
independent of the y;’s in (1.1). Thus we have

yo ~ N(a + 89,0%). (1.2)

The problem of calibration, or inverse regression, deals with statistical inference concerning 6.
The set of y,’s in (1.1), corresponding to the known values z; (j = 1, 2, ..., N), is referred to
as the calibration data. The relationship between the y;’s and the corresponding z;’s is known
as the calibration curve. We are thus dealing with the situation where the calibration curve is
a straight line.

Most of the available literature on the calibration problem deals with point estimation of 8,
or the construction of confidence regions for . The purpose of this article is to address some
hypothesis testing problems concerning 9. More specifically, we shall consider the following
testing problems:

(i) Hy: 0 >cvs Hy : 0 <, (ii) Hop: 8 < cvs Hy : 0 > ¢, (1.3)

where ¢ is a known number, specified in advance. Our investigation of this problem was moti-
vated by the following application.

Estimation of blood alcohol concentration — an example

This example deals with the calibration of breath estimates of blood alcohol concentration,
based on the results of a laboratory test. Here, the y;’s are breath estimates of blood alcohol
concentrations and the z;’s are the actual concentration of alcohol in the blood, obtained by
a laboratory test. The relevant data, given in Section 3, are based on a study conducted at
Acadiana Criminalstics Laboratory, New Iberia, Louisiana. It turns out that the model (1.1)
provides an adequate fit for the data. We can use the models (1.1) and (1.2) in order to estimate
an unknown blood alcohol concentration , after obtaining the corresponding breath estimate
yo. Such an estimation is preferable to the actual laboratory determination of the blood alcohol
concentration, since it is much easier and faster to obtain the breath estimates. In this context.
we would also like to test whether an unknown blood alcohol concentration 6 is less than or
equal to 0.10 or if it exceeds 0.10, since the legal maximum limit of blood alcohol concentration
while driving is 0.10% in many states in the USA (in some states it is 0.08%). This is precisely
the testing problem (ii) in (1.3).

The hypothesis testing problems in (1.3) will also arise in the context of decision and de-
tection limit problems in bioassays and chemical assays. Suppose we want to determine the
concentration of a chemical in a sample where a direct determination of the concentration may



be difficult or expensive. On the other hand, it may be easier to obtain an indirect measurement,
for example, spectral measurements. First, several samples having known concentrations (the
z,’s) are prepared, and the corresponding indirect measurements (the y;’s) are obtained. As-
suming that the relationship (1.1) holds, we can use this data for statistical inference concerning
an unknown concentration, say f, in a sample, after obtaining the corresponding indirect mea-
surement yo. In this context, the testing problems in (1.3) will arise if we want to verify whether
the unknown concentration is above a threshold, or if it is below. This is precisely the decision
limit problem. We refer to Currie (1988) for a detailed discussion of this problem as it arises
in analytical chemistry. The testing problems (1.3) in the context of bioassays are addressed,
for example, in Dunne (1995). A good discussion of decision and detection limits, along with
environmental applications, can be found in Gibbons (1994, Chapter 5). Other examples and
applications are given in a number of books and articles; see the book by Brown (1993) and the
article by Osborne (1991) for a review.

For the models (1.1) and (1.2), appropriate tests for the hypotheses in (1.3) can be derived
under two different situations. The first is when the calibration data are used only once for
the purpose of testing hypothesis. In the context of the chemical example mentioned above,
this means that the calibration data are collected and used to test hypothesis concerning an
unknown concentration of a single sample. A more realistic scenario is one where the same
set of calibration data are used repeatedly in order to test hypotheses concerning a sequence
of O—values, one at a time, after observing the corresponding sequence of responses. This is
the situation of multiple use of the calibration data. In other words, we have a sequence of
independent responses yo;, corresponding to a sequence of 8 values 8;, following the model

voi ~ N(a + B6;,0%), (1.4)
similar to (1.2), 7 = 1, 2, 3, .... Correspondingly, we have the following sequence of hypotheses
to be tested.

(l) H(),j 10 > ¢ vs Hli : 91‘ < €4, (11) H(),j . 0; < ¢ VS Hli : 9,j > Ci, (15)

where the ¢;’s are known scalars. For instance, in Example 1, we want to verify if for every
individual tested, the blood alcohol concentration is no more than 0.10, or no more than 0.08,
where the value 0.10 or 0.08 is to be used depending on the legal maximum limit in a state. In
other words, we have hypotheses of the type (ii) in (1.5), where the ¢;’s can take two different
values, 0.10 and 0.08. In the decision limit problem, we may be interested in testing if the con-
centration of a chemical or a pollutant in different samples exceeds a particular safety threshold.
Such tests may have to be done a large number of times, as and when a sample is obtained. In
other words, we need to test a sequence of hypotheses of the type (i) or (ii) in (1.5). It is also
clear that in many applications, the ¢;’s in (1.5) will have a common value.

Tests that we shall derive for testing the sequence of hypotheses in (1.5) will have two types
of uncertainty statements associated with them. One with respect to the sequence of responses
yoi in (1.4), and a second uncertainty statement with respect to the calibration data, i.e., the
y;’s in (1.1). This is formally explained in Section 2. The distinction between single use and
multiple use of the calibration data are also made for the construction of confidence regions. In
fact confidence regions that involve multiple use of the calibration data are derived subject to
two types of uncertainty statements, similar to those mentioned above. We refer to the recent



article by Mee and Eberhardt (1996) for an excellent discussion on this. The results in Dunne
(1995) deal with the set up of single use of the calibration data. In fact Dunne (1995) provides
solutions to the testing problems in (1.3) in the single use situation. Consequently, in this article,
we shall study the problem for the case of multiple use of the calibration data.

In the next section, we shall derive the tests. The two uncertainty statements, mentioned
earlier, are explicitly stated and tests are derived subject to these. In our derivations, we have
assumed that 8 > 0 in (1.1). Essentially, this amounts to assuming that the sign of 3 is known.
This is clearly a reasonable assumption since the nature of the dependence of the response vari-
able on the explanatory variable will be known in actual applications. In case 8 < 0, we can
assume that the slope in (1.1) is —/, after multiplying y; by —1. In fact, the tests (i.e., decision
limits) derived in Dunne (1995) use the fact that the sign of 8 is known. In Section 3, we apply
our results to the alcohol concentration data, mentioned in example 1. Some concluding remarks

appear in Section 4.

2. The Test

Among the two hypotheses in (1.5), here we shall consider only the sequence (i). Once we derive
tests for testing (i), similar results can be obtained for testing the sequence (ii) in (1.5).

Let & and 3 denote the least squares estimators of o and 3 based on the y;’s in (1.1), and
let 62 denote the unbiased estimator of 0% based on the residual sum of squares. Then

N

s Yz =Ty — 9) 5 1 ;
g == & Ca=g- 07, and 6°=——=) (y —a—fz;) 2.1
Siki(z; - 2)? N=-25 CA

where 7 and Z denote the averages of the y;’s and the z;’s, respectively. As pointed out in the
introduction, we assume that g > 0.

2.1. Motivation of the test statistic
Suppose «, 3 and o? are known. Then, from (1.2),

Yo — & o’

3 ~ N0, —=).

ﬂﬁQ
Hence, we shall reject Ho: 6 > ¢ in favor of Hi: § <cif 73 is small, or equivalently, if yi——%:@—c

6 =

b—c

is small. In order to arrive at the latter conclusion, we have used the expression for 6 (given
above), along with our assumption § > 0. In practice, usually a, 3 and o? are unknown, and
we shall replace them by their estimators. Thus let

:yo—d—ﬁc
—

T

Our test for Ho: 8 > ¢ will reject Hp in favor of Hy: 8 <c¢ if T is small. Hence, for testing the
sequence of hypotheses (i) in (1.5), consider the test statistic

Yo — & — Bei
e

T, = (2.2)






We shall reject Ho;: 0; > ¢; in favor of Hy;: 0; < ¢ if
ﬂ < ki, (23)

i =1, 2, 3, ..., where the k;’s are to be determined. Note that the test statistic T; depends
on the response yo; and also on the calibration datay;, 7 =1, 2, ..., N, through &, § and &.
Furthermore, (2.3) represents a sequence of rejection regions, for i =1, 2, 3, ...

2.2, Criterion for the derivation of the test

The derivation of our test amounts to the computation of the k;’s in (2.3). We shall now explain
the condition to be satisfied by the k;’s. Since the calibration data will be used repeatedly for
testing a sequence of hypotheses, consider the proportion of Hp;’s that are rejected, when they
are true, conditionally given the calibration data, i.e., conditionally given &, 8 and ¢. In other
words, conditionally given &, 3 and &, consider the proportion of times T; < k;, under Ho;:
6. > ¢;, i =1,2, 3, ... The ks are to be determined so that with a high probability, the
calibration data will guarantee that this proportion is small (i.e., less than a specified bound),
for all 8;’s under the corresponding null hypothesis Hy,. Note that given q, B and &,

’ _ A A A2
T‘;NN\:Q a+1691, /Bcz,%}-
g

g

Hence, conditionally given &, 3 and &, T, < k; is equivalent to

ELEL LA o

20 < [/ﬁ — -

o

where zg; ~ N(0,1). We shall now give an expression for the proportion of Hy,; that are rejected
(i.e., proportion of times T; < k;), conditionally given &, § and d. Let

1, if T; <k
Bi = { 0, otherwise. (2:5)

Conditionally given &, ﬁ and &, the A;’s are independent Bernoulli random variables with
success probability, say p;, given by

a— &+ 6 — Be;
o

p = P(T, < ki@, 8,6) = ®{k.7 - } (2.6)

where ® denotes the standard normal cdf. In order to arrive at (2.6), we have used the fact that
conditionally given &, 8 and &, T; < k; is equivalent to (2.4). If a sequence of n tests are carried
out, then the proportion of times T; < k; is %Z;’:l A;. By the strong law of large numbers, we
get

- Ai — =) i

as n becomes large. In other words, conditionally given &, [3 and &, the proportion of Hy, that
are rejected is %Zf’zlpi, when n is large. We want this proportion to be small, with a high



probability, for all §; under the corresponding null hypotheses Ho;: 6; > ¢;, 1 =1, 2, 3, .... That
is, the k;’s must satisfy

1 n
Pa.a,a[g ;pi < 6} =7, (2.7)
for all #; under the corresponding null hypotheses Hy: 6, > ¢, 1=1,2,3, ..., n, where € is

a specified bound (say, € = 0.05) and v is the chosen probability (say, v = 0.95). Due to our
assumption 3 > 0, it follows from the expression for p; in (2.6) that p; is maximum under Ho;:
0, > ¢; when 8, = ¢;. Hence (2.7) holds for all ; satisfying 8; > c; if and only if it holds for
8, = ¢;. Using expression for p; in (2.6), we thus get the following condition to be satisfied by
the k;’s:

1 G a—d+(ﬂ—ﬁ)c,;
R = o < €| = . _
pa’ﬁ,a[n ILILE . }<el =7 (2.8)

The condition (2.8) can be interpreted as the “size of the tests” being small, i.e., less than or
equal to €, with probability . We note that (2.8) must actually hold for every n.

Thus the criterion to be used for the derivation of the test, i.e., the computation of the k;’s,
is the condition (2.8), which must hold for all n > 1. As is clear from the derivation of (2.8),
this condition reflects the fact that the same calibration data are used a large number of times
for testing hypotheses. The fact that the same calibration data are used repeatedly is also the
reason why we don’t want to consider the unconditional distribution of the T;’s in (2.2).

2.3. Computation of the k;’s
Note that

a—a+(3-P)e=(a+p8 -7+ (8- 08)(c—7)
Define

N
2= (Y = 2B = B)fo ~ N(0.1), 2= VN({F-a-57)/o~N0.1)
A2 &
u? = (N - 2)%5 ~ Xa_g, and ¢y = [ngzl(((:;j __I;)2]1/2' (2.9)

The random variables z;, zp and u in (2.9) are independently distributed, and x2 denotes the
central chisquare distribution with r df. The k; that we compute will be a function of ¢1; given
in (2.9). Hence from now on we shall use the notation k(cy;) instead of k;. Using the quantities
in (2.9), (2.8) simplifies to

1& u 29
Pzzu[— &{k(ci))——=+ 2101+ —=} < €| =7. 2.10
1,22, n; {(1)\/]\]—_—5 1614 \/N}— Y ( )
It appears difficult to obtain k(c1;) explicitly, except in the special case when the cy;’s are
all equal. We shall first consider this special case. From the expression for ¢y;, given in (2.9), it
follows that the cy;’s are all equal if and only if the ¢;’s are all equal. As already pointed out,
the ¢,’s will be equal in many practical applications; see the discussion following (1.5). When



the ¢;’s are all equal, let ¢ denote the common value of the ¢;’s and let ¢o denote the common
value of the ¢y;’s. Hence, from (2.9),

co = (c=2) (2.11)

[y — )

In this special case, (2.10) simplifies to

U pA
P (I){k(CO)ﬁ——_—-E + 2160 + —ﬁ} <e€|l =7, (2.12)

or, equivalently,

Pn,lm"%@dﬁ -+ zicp + 7‘4—%
where z(¢) denotes the 100e'™® percentile of the standard normal distribution. We note that the
condition (2.12), or equivalently, (2.13), is essentially the condition to be satisfied by one sided
tolerance intervals. Indeed, we can arrive at (2.12) by starting with the expression for a one
sided tolerance interval and using the fact that 8 > 0. The solution to the one sided tolerance
interval problem is already known; see Guttman (1970, pp. 87-89). The solution to k(cq) is
given by

< 2] = v, (2.13)

z(e
k(co) = (% + )V [N =2 (_%\;—_*_E—_C(%)lﬁ]’ (2.14)
where t;_,[r; A] denotes the 100(1 — ~)th percentile of the noncentral t-distribution with df = r
and noncentrality parameter X\. Thus in the special case where the ¢;’s are all equal to a common
value ¢, k(co) in (2.14) satisfies (2.12), where ¢o is given in (2.11).
When the ci;’s are not all equal, it is not possible to obtain k(c1;) explicitly. In what follows,
we shall explore the following possibility. Let k(c;;) satisty

u z
Py 2y (I){k(cli)—\/ﬁ—?——i +zic + -\/—%} <el =7 (2.15)

In other words,
1 21/2 ) z(e)

klew) = (7 + i) tiy[N =2 W] (2.16)
The expression in (2.16) follows since (2.15) is similar to (2.12). We shall numerically investigate
whether k(cy;) in (2.16) will satisfy (2.10) for various sequences {c1;}. Note that (2.15) is a toler-
ance interval condition and is quite different from (2.10). In a recent article on the construction
of confidence regions in the calibration problem, Mee and Eberhardt (1996) have indicated that
intervals obtained using a tolerance interval condition may satisfy the requirements of multiple
use confidence regions. Motivated by this, we shall explore whether k(cy,) in (2.16) will satisfy
(2.10).

2.4. Numerical results for k(cy;) in (2.16)

We have carried out some numerical results to check if k(cy;) in (2.16) will satisfy (2.10). For
this purpose, we need to simulate the left hand side (lhs) of (2.10) using k(cy;) given in (2.16),



for various sequences {c;;}. Note that when the cy;’s are all equal, i.e., when the ¢;’s are all
equal, such a numerical study is not necessary, since, in this case, k(co) satisfies (2.12), where
co denotes the common value of the ¢;;’s. Thus the numerical results that we report here are
only for the case when the c;;’s are unequal. We shall first discuss our choices for the sequence
{c1;}. When the calibration data are collected based on a carefully designed experiment, then
the z;'s in (1.1) will cover the range of practical interest. Hence it is reasonable to assume that
the §;’s in (1.4) belong to the range determined by the z;’s, le.,

min(z;) < 6; < max(z;), (2.17)

i = 1,2, 3, ....Consequently, when (2.17) holds, the ¢;’s in (1.5) should also belong to the range
of the z,’s. In other words, when we test the null hypothesis Hy, : 8; > ¢;, we are testing if 8, is
greater than or equal to a specified value in the range of the z;’s. Hence we shall assume

min(z;) < ¢; < max(z;), (2.18)
i =1, 2,3, ... From the definition of ¢;; given in (2.9), (2.18) gives

min(z;) — max(z;) — I

<ew < I (2.19
S - 2 =S T, - 2 )
i =1, 2, 3, .... In particular, (2.19) implies that

1<en <l (2.20)

The actual bounds for ¢y;, given in (2.19), could be much narrower than [—1,1]. In any case, in
order to investigate whether k(cy;) in (2.16) will satisfy (2.10), it appears reasonable to restrict
c1;’s in the interval [—1,1]. In our numerical results, we have also considered the wider interval

—2,2].
For various sequences {cy;}, i = 1, 2, ...., 10,000, we have simulated the following quantity.
1 10000 u 2
Pzzu|:__— @kCi_‘——‘l‘ZCj‘l——_ SG, 221
L2110, 000 ; thlew) =g T2 Nk (2.21)

based on 10,000 simulations. The IMSL Fortran function subroutine TNIN is used to compute
k(cy;). Note that (2.21) is an approximation to the lhs of (2.10). Since (2.10) holds exactly
when the ci’s are all equal, (2.10) is expected to hold approximately when the ¢;;’s are nearly
equal. Thus it is necessary to investigate whether (2.10) will hold when the ¢;;’s are as unequal
as possible. In any finite sequence {cy;}, with ¢; € [—a, al, the ¢;’s are as unequal as possible,
i.e., the variance among them is a maximum, when half of the cy;’s are equal to —a and the
remaining half are equal to a. In this case, (2.21) reduces to

1 U ) ! 2
Pzz“{—(@k— —_— + —=}+ k() ——=+= +——><}. 2.22
L2 o {( a) ) z1a \/YV_} {(a) N -9 1a \/]_V_} > € ( )
The following IMSL subroutines are used in the numerical studies: TNIN to compute k(cy;i);
RNNOA to generate normal variates; and RNCHI to generate chi-square variates. For NV = 20,
¢ = 0.05 and 0.01, v = 0.99, 0.95, 0.90 and 0.85, and a = 2, 1, 0.5 and 0.1, Table 1 gives the



simulated values of (2.22), based on 10,000 simulations. When the sequence {ei},1=1,2, ...,
10,000 consists of 10,000 equispaced values in the interval [—2,2] and [—1, 1], the simulated val-
ues of (2.21) appear in Table 2. If 10,000 cy;’s are randomly generated according to a standard
normal distribution, the simulated values of (2.21) appear in Table 3.

Table la
The simulated values of (2.22) for N = 20 and e = 0.05, for different values of v and a

a %

099 095 090 085
2 0087 0.936 0.852 0.777
1 0991 0950 0.889 0.826
0.5 0.993 0.959 0.916 0.857
0.1 0990 0.952 0.902 0.849

Table 1b
The simulated values of (2.22) for N = 20 and e = 0.01, for different values of v and a

a Y
099 095 090 085
0085 0.923 0.848 0.753
1 0991 0938 0.865 0.799
0.5 0991 0.952 0.885 0.824
0.1 0.992 0.949 0.897 0.857

Table 2
The simulated probabilities (2.21) for N = 20 when the sequence {c1;} assumes 10,000 equis-

paced values in the interval [—a, a]

(—a,a ¥

€ 0.99 0.95 0.90 0.85
| 2,2} 0.05 0.989 0.954 0.902 0.852
[——1,1} 0.05 0.992 0.951 0.898 0.851
(-2.2]
-1.1]

0.01 0.991 0.954 0.907 0.846
0.01 0.993 0947 0.902 0.851

Table 3
The simulated probabilities (2.21) for N = 20 when the sequence {c1;} is generated based on

N(0,1).i=1,2, ..., 10,000

8
€ 099 095 090 0385
0.05 0.989 0.950 0.897 0.832
0.01 0.992 0.951 0.899 0.834

The simulation results indicate that k(cy,) in (2.16) will satisfy (2.10) reasonably well at least
in situations where the range for cy;, given in (2.19), is a narrow interval. As expected, (2.10) is



more satisfactorily met for narrower intervals. As already pointed out, it appears quite reason-
able to assume that —1 < ¢;; < 1. In practice, the range for cy; is likely to be much narrower,
especially when N is somewhat large. This should be clear from (2.19). In terms of meeting
the condition (2.10), the results are somewhat unsatisfactory in the set up of Table 1, especially
for v = 0.85. However, Table 1 represents the ‘worst case scenario’, since (2.22) corresponds to
the situation where half of the ci;’s are equal to —a and the remaining half are equal to a (for
a=21,05,0.1). In other words, among the sequence of hypotheses being tested, half of the
time we are testing if the parameter is greater than or equal to one extreme of the parameter
space (i.e., —a) and the other half deals with testing if the parameter is greater than or equal
to the other extreme (i.e., a). In actual applications, this appears unrealistic. Nevertheless, the
purpose of reporting the numerical results in Table 1 is to see of (2.10) (i.e, (2.22)) is met in
this extreme situation. For large values of  the results are quite satisfactory, especially when
a is small. In any case, the numerical results in Table 1-Table 3 provide evidence regarding the
extent to which (2.16) will satisfy (2.10). The overall conclusion is that in practical applications
that call for multiple use of the calibration data for testing the hypotheses in (1.5), k(c1;) given
in (2.16) is quite adequate for meeting the requirement (2.10).

2.5. Testing the hypothesis 1.5 (ii)

Tests for the hypotheses (ii) in (1.5) can be similarly derived. The rejection regions now take
the form T; > k;(c1;), where T; is given in (2.2) and cy; is given in (2.9). When the ¢,;’s are all
equal to cp, k1(co) is given by

z(1—¢)

1
kq (C(]) = (j—v‘ + C(Q))l/Qtry[jv -2

similar to (2.14). Also, k;(ci;) has an expression similar to that of k(cy;) in (2.16).

3. An Example

A study was conducted at Acadiana Criminalstics Laboratory, New Iberia, Louisiana, to compare
the breath estimates of blood alcohol concentration with those determined by a laboratory test.
A sample of 15 subjects was used. In Table 4, we present the breath estimates (y;) obtained
using Breathalyzer Model 5000 and the results of the laboratory test (z;). These numbers are
percentages of alcohol concentration in blood. Here we assume that the z;’s are accurately
measured, i.e., the measurement errors are small enough to be ignored, so that the z;’s can be
assumed to be fixed. A simple linear regression model was fit with y regressed on z based on
all 15 pairs of observations. The fitted model is y = 0.00135 + 0.958z and the value of R? is
0.93. The normal probability plot of the residuals is reasonably linear and hence the distribution
of error terms does not depart from a normal distribution. Since in many states in the USA
the legal maximum limit of blood alcohol concentration while driving is 0.1%, we want to test
whether 8 < 0.10 or # > 0.10. In other words, here we shall consider the situation where the ¢;’s
in (1.5) are all equal and equal to 0.10. In this problem, one may want to control the probability
of concluding @ > 0.10 when in fact § < 0.10. Thus we shall consider the following null and

alternative hypotheses.
Hy:60<010 vs  H;:0>0.10 (3.1)
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We shall carry out the test using € = 0.05 and v = 0.95. From (2.23),

aleo) = (3 + ) tosslN ~ 2 :ﬁf—g‘?—,l (32)
14 0
We reject Hy for the i*® individual if T; > k1(co)-

In Table 4, we give the classical estimates obtained by solving from the fitted model for z,
and the values of test statistics 7;. The T;’s are computed using the leave-one-out method; for
example to compute the point estimate and the value of the test statistic corresponding to y; =
0.145 in Table 4, the observation (.145,.160) is not used to fit the model. Thus, N = 14, in (3.2).
Fitting the model by deleting the first observation, we get & = .0007, § = .97, ¢co = —0.077,
T, = 3.40, and k;(co) = 2.67. Furthermore, T, = T";d = '145370007 = .149. This process can be

carried out by deleting each observation in Table 4.

Table 4
Blood Alcohol Concentrations Data, Estimates and Test Statistics

Y; z; Z; T; kl(CO)

1 145 .160 .149 3.40 2.67
2 156 .170 .160 4.18 2.67
3 .181 .180 .189 6.00 2.67
4 .108 .100 .112 085 2.68
5 .180 .170 .189 6.27  2.67
6 .112 .100 .117 119 268
7 .081 .060 .08 -1.11 2.69
8 .104 .100 .108 0.53 2.68
9 .176 .170 .185 5.78 2.67

10 .048 .056 .047 -3.56 2.69
11 .092 .111 .093 -0.47 268
12 .144 162 .147 3.38 267
13 .121 .143 124 1.73 267
14 065 .079 .065 -2.42 2.68
15 .000 .006 -.006 -7.05 2.71

We observe from Table 4 that the test results are in agreement with those based on labora-
tory test except for the 11th and 13th subjects. We also note that for the 15th observation, z;
= 0.006 and 2; = —0.006. This discrepancy may be due to the fact that the corresponding y;
= 0 and z, is very close to zero.

4. Concluding Remarks

In this article, we have investigated hypothesis testing in the calibration problem. In the uni-
variate case, we have succeeded in deriving appropriate tests for testing one sided hypotheses
in the situation of multiple use of the calibration data. The results are illustrated using an
example. The two sided testing problem is not considered in this article, since tests in this
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context can be obtained by inverting the multiple use confidence regions that are available in
the literature. One-sided multiple use confidence regions can certainly be developed and can be
used for testing the hypotheses in (1.5). The simultaneous tolerance intervals in Mee, Eberhardt
and Reeve (1991) can be used to obtain conservative multiple use confidence regions, and hence
conservative multiple use tests, for the two sided testing problem. The one-sided simultaneous
tolerance intervals in Odeh and Mee (1990) can similarly be used for obtaining conservative
multiple use tests for the one sided testing problems in (1.5). However, in the present article,
our goal has been to investigate whether the tolerance interval condition can be used for carrying
out multiple use hypotheses tests. The numerical results in Section 3 show that this is indeed
the case. Note that our results are applicable only in the univariate set up and similar results
are currently not available in the multivariate case. The problem of testing hypothesis in the
multivariate calibration problem is currently under investigation.
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